Intimate Interactions with Carbonyl Groups: Dipole–Dipole or n→π*?
نویسندگان
چکیده
منابع مشابه
Intimate interactions with carbonyl groups: dipole-dipole or n→π*?
Amide carbonyl groups in proteins can engage in C═O···C═O and C-X···C═O interactions, where X is a halogen. The putative involvement of four poles suggests that these interactions are primarily dipolar. Our survey of crystal structures with a C-X···C═O contact that is short (i.e., within the sum of the X and C van der Waals radii) revealed no preferred C-X···C═O dihedral angle. Moreover, we fou...
متن کاملOrthogonal dipolar interactions between amide carbonyl groups.
Orthogonal dipolar interactions between amide C=O bond dipoles are commonly found in crystal structures of small molecules, proteins, and protein-ligand complexes. We herein present the experimental quantification of such interactions by employing a model system based on a molecular torsion balance. Application of a thermodynamic double-mutant cycle allows for the determination of the increment...
متن کاملn→π* Interactions Engender Chirality in Carbonyl Groups
An n→π* interaction stems from the delocalization of the electron pair (n) of a donor group into the antibonding orbital (π*) of a carbonyl group. Crystallographic analyses of five pairs of diastereoisomers demonstrate that an n→π* interaction can induce chirality in an otherwise planar, prochiral carbonyl group. Thus, a subtle delocalization of electrons can have stereochemical consequences.
متن کاملA Donor–Acceptor Perspective on Carbonyl–Carbonyl Interactions in Proteins
Electronic delocalization, a central concept in organic chemistry, is being invoked increasingly in biological contexts [1–3]. We have discovered a non-covalent interaction in proteins, termed the n→π* interaction, in which the lone pair (n) of the oxygen (Oi–1) of a peptide bond overlaps with the antibonding orbital (π*) of the carbonyl group (C′i=Oi) of the subsequent peptide bond (Figure 1A,...
متن کاملNature of Amide Carbonyl−Carbonyl Interactions in Proteins
Noncovalent interactions define and modulate biomolecular structure, function, and dynamics. In many protein secondary structures, an intimate interaction exists between adjacent carbonyl groups of the main-chain amide bonds. As this short contact contributes to the energetics of protein conformational stability as well as protein-ligand interactions, understanding its nature is crucial. The in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Organic Chemistry
سال: 2012
ISSN: 0022-3263,1520-6904
DOI: 10.1021/jo302265k